Wm4ApprQuadraticFit3.h

Go to the documentation of this file.
00001 // Wild Magic Source Code
00002 // David Eberly
00003 // http://www.geometrictools.com
00004 // Copyright (c) 1998-2007
00005 //
00006 // This library is free software; you can redistribute it and/or modify it
00007 // under the terms of the GNU Lesser General Public License as published by
00008 // the Free Software Foundation; either version 2.1 of the License, or (at
00009 // your option) any later version.  The license is available for reading at
00010 // either of the locations:
00011 //     http://www.gnu.org/copyleft/lgpl.html
00012 //     http://www.geometrictools.com/License/WildMagicLicense.pdf
00013 // The license applies to versions 0 through 4 of Wild Magic.
00014 //
00015 // Version: 4.0.0 (2006/06/28)
00016 
00017 #ifndef WM4APPRQUADRATICFIT3_H
00018 #define WM4APPRQUADRATICFIT3_H
00019 
00020 #include "Wm4FoundationLIB.h"
00021 #include "Wm4Vector3.h"
00022 
00023 namespace Wm4
00024 {
00025 
00026 // Quadratic fit is
00027 //
00028 //   0 = C[0] + C[1]*X + C[2]*Y + C[3]*Z + C[4]*X^2 + C[5]*Y^2
00029 //       + C[6]*Z^2 + C[7]*X*Y + C[8]*X*Z + C[9]*Y*Z
00030 //
00031 // subject to Length(C) = 1.  Minimize E(C) = C^t M C with Length(C) = 1
00032 // and M = (sum_i V_i)(sum_i V_i)^t where
00033 //
00034 //   V = (1, X, Y, Z, X^2, Y^2, Z^2, X*Y, X*Z, Y*Z)
00035 //         
00036 // Minimum value is the smallest eigenvalue of M and C is a corresponding
00037 // unit length eigenvector.
00038 //
00039 // Input:
00040 //   n = number of points to fit
00041 //   p[0..n-1] = array of points to fit
00042 //
00043 // Output:
00044 //   c[0..9] = coefficients of quadratic fit (the eigenvector)
00045 //   return value of function is nonnegative and a measure of the fit
00046 //   (the minimum eigenvalue; 0 = exact fit, positive otherwise)
00047 
00048 // Canonical forms.  The quadratic equation can be factored into
00049 // P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0], B = (C[1],C[2],C[3]),
00050 // and A is a 3x3 symmetric matrix with A00 = C[4], A11 = C[5], A22 = C[6],
00051 // A01 = C[7]/2, A02 = C[8]/2, and A12 = C[9]/2.  Matrix A = R^T D R where
00052 // R is orthogonal and D is diagonal (using an eigendecomposition).  Define
00053 // V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2), and f = K
00054 // to obtain
00055 //
00056 //   d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0
00057 //
00058 // Characterization depends on the signs of the d_i.
00059 template <class Real> WM4_FOUNDATION_ITEM
00060 Real QuadraticFit3 (int iQuantity, const Vector3<Real>* akPoint,
00061     Real afCoeff[10]);
00062 
00063 // If you think your points are nearly spherical, use this.  Sphere is of form
00064 // C'[0]+C'[1]*X+C'[2]*Y+C'[3]*Z+C'[4]*(X^2+Y^2+Z^2) where Length(C') = 1.
00065 // Function returns C = (C'[0]/C'[4],C'[1]/C'[4],C'[2]/C'[4],C'[3]/C'[4]), so
00066 // fitted sphere is C[0]+C[1]*X+C[2]*Y+C[3]*Z+X^2+Y^2+Z^2.  Center is
00067 // (xc,yc,zc) = -0.5*(C[1],C[2],C[3]) and radius is rad =
00068 // sqrt(xc*xc+yc*yc+zc*zc-C[0]).
00069 template <class Real> WM4_FOUNDATION_ITEM
00070 Real QuadraticSphereFit3 (int iQuantity, const Vector3<Real>* akPoint,
00071     Vector3<Real>& rkCenter, Real& rfRadius);
00072 
00073 }
00074 
00075 #endif

Generated on Wed Nov 23 19:01:02 2011 for FreeCAD by  doxygen 1.6.1